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ABSTRACT 

We present a bottom-up method for melody detection in polyphonic musical signals. Our approach is based on the 
assumption that the melodic line is often salient in terms of note intensity (energy). First, trajectories of the most 
intense harmonic groups are constructed. Next, note candidates are obtained by trajectory segmentation (in terms of 
frequency and energy variations). Too short, low-energy and octave-related notes are then eliminated. Finally, the 
melody is extracted by selecting the most important notes at each time, based on their intensity. 

We tested our method with excerpts from 12 songs encompassing several genres. In the songs where the solo stands 
out clearly, most of the melody notes were successfully detected. However, for songs where the melody is not that 
salient, the algorithm performed poorly. Nevertheless, we could say that the results are encouraging. 

 

1. INTRODUCTION 

As a result of recent technological innovations, there 
has been a tremendous growth in the Electronic Music 
Distribution (EMD) industry. Factors like the 
widespread access to the Internet, bandwidth increasing 

in domestic accesses or the generalized use of compact 
audio formats with CD or near CD quality, such as mp3, 
have given a great contribution to that boom. Presently, 
it is expected that the number of digital music archives, 
as well as their dimension, grow significantly in the near 
future, both in terms of music database size and in 
number of genres covered.  
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However, any large music database, or, generically 
speaking, any multimedia database, is only really useful 
if users can find what they are looking for in an efficient 
manner. Today, whether it is the case of a digital music 
library, the Internet or any music database, search and 
retrieval is carried out mostly in a textual manner, based 
on categories such as author, title or genre. This 
approach leads to a certain number of difficulties, 
namely in what concerns database search in a 
transparent and intuitive way. Therefore, in order to 
overcome the limitations described, research is being 
conducted in an emergent and promising field called 
Music Information Retrieval (MIR). 

Query-by-humming (QBH) [1, 4, 6] is a particularly 
intuitive way of searching for a musical piece, since 
melody humming is a very natural habit of humans. 
Therefore, several technologies have been developed 
that aim to permit such function. However, presently, 
this work is being carried out only in the MIDI realm, 
which places important usability questions. In fact, 
usually we look for recorded songs, which can be 
obtained from CDs or are stored in audio formats such 
as mp3. Looking for musical pieces in the MIDI format 
is a much easier problem, since this is a symbolic 
format where all the notes, as well as their timings, are 
already available. The main issues are, then, to extract 
the notes from the hummed query (a well-known 
monophonic pitch extraction problem,) and to match the 
query to the melody, usually available in the MIDI file 
(an information retrieval problem).   

Querying “real-world” polyphonic recorded musical 
pieces requires that some sort of melody representation 
be extracted beforehand, which creates many more 
difficulties. Polyphonic musical signals can be 
converted to symbolic formats either manually or 
automatically. Manual conversion requires, obviously, a 
tremendous amount of man-work and specialized skills. 
On the other hand, analyzing polyphonic musical 
signals is a rather complex task, since we can have 
many different types of instruments playing at the same 
time, whose spectra interfere severely with each other. 
This fact makes it very complicated to separate the 
different sound sources. 

Source separation is a major concern for polyphonic 
music analysis and automatic music transcription 
systems, and has no general solution yet. One way to 
approach this problem is to build computer models that 
emulate human auditory processing. The human brain 
processes auditory information in a way called 

“auditory scene analysis” [3]. As an attempt to replicate 
human behavior, some work has been carried out 
aiming to develop computational auditory scene 
analysis systems. The results obtained are not very 
accurate yet and are only acceptable for simpler or 
well-constrained problems. Namely, Ellis [5] tries to 
analyze a sound signal by means of competitive 
theories, where each of them proposes a combination of 
sounds that might have produced the resulting sound. 
Sound source models are used as a basis for the 
proposed method. Bello et al [2] and Martin [9] have 
used computational blackboard systems for simple 
automatic music transcription. The blackboard system is 
composed of a global database, where hypotheses are 
proposed and developed, a scheduler that determines 
how hypotheses are developed, and knowledge sources, 
corresponding to experts. Scheirer [11] proposes a 
model based on perceptual issues, using dynamic 
clustering of comodulation data. In contrast to the other 
systems referred, this model is designed for analysis of 
complex music. Klapuri [8] proposed a method for 
multi-pitch estimation where the musical signal is 
analyzed at separate frequency bands. Namely, 18 
logarithmic distributed bands from 50 Hz to 6 kHz are 
used. Then at each band, a fundamental frequency 
likelihood vector is calculated. Finally, the results from 
each band are combined to yield global pitch 
likelihoods. They report results that outperform the 
average of ten trained musicians. Other models impose 
constraints in the number of instruments present or the 
harmonic interaction between them, as referred in [7]. 

Melody detection can be seen as a sub-problem of 
polyphonic pitch detection and source separation, where 
the aim to detect the main melodic line, regardless of 
the other sources present. This requires the detection of 
the dominant notes at each time, not the whole set of 
notes present. For instance, when we hear a pop song, 
we have vocals, guitar, bass, percussion and so forth. 
Yet, in spite of all that information, our brains still can 
retain the main melodic line.  

Only little work has been carried out in the particular 
problem of melody detection in “real-world” songs. One 
interesting approach is the one followed by Goto [7]. 
The author uses a probabilistic model for the detection 
of melody and bass lines. The signal is first band-pass 
filtered and then a probability density function (pdf) is 
computed for each signal component. The pdfs are 
generated from a weighted-mixture of tone models of all 
possible fundamental frequencies. The more dominant a 
model is in the PDF, the more likely the fundamental 
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frequency belongs to that model. The author compared 
the dominant frequencies detected with hand-labeled 
marked notes and reports an average rate of 88.4% for 
the melodic pitch line.   

Song et al [14] use a different approach, based on the 
fact that there is no single method that is both accurate 
and generic. They argue that their method is more 
pragmatic when the final goal is QBH: instead of trying 
to extract the melody, they use a mid-level melody 
representation, which consists of a sequence of audio 
segments where each segment contains a set of note 
candidates. Then, they use a variation of dynamic 
programming for matching the query with the melody 
mid-level representation. 

In this paper, we describe a multi-stage bottom-up 
method for melody detection, based on sinusoid tracks 
[12]. Our approach is laid on the assumption that the 
melodic line is often composed of the notes with the 
highest intensity (energy). In short, the method works as 
follows. The signal is first divided into frames where 
stationarity can be assumed. For each frame, we get the 
magnitude spectrum and find its spectral peaks. Then, 
we define harmonic groups, composed of harmonically 
related peaks, and compute the energy of each harmonic 
group. We create group trajectories, formed by 
connecting consecutive groups with similar fundamental 
frequencies. After trajectory creation, note candidates 
are obtained by trajectory segmentation and elimination. 
Short-duration, low-energy and octave-related notes are 
then eliminated. Finally, the melody is extracted by 
selecting the most important notes at each time, based 
on their intensities.   

We tested our system on excerpts of 12 songs, 
encompassing several different genres. The obtained 
notes were then compared with the correct ones, 
previously hand-labeled. In the songs where the solo 
stands out clearly, most of the melody notes were 

successfully detected. However, for songs where the 
melody is not that salient, the algorithm performed 
poorly. Yet, we could say that the preliminary results 
presented are encouraging. 

The following sections describe the work carried out in 
this paper. Section 2 describes the melody detection 
method. In Section 3, experimental results are presented 
and evaluated. Finally, in Section 4, conclusions are 
drawn and possible directions for future work are 
pointed out. 

2. MELODY DETECTION METHOD 

Our melody detection algorithm is composed of five 
modules, illustrated in Figure 1.  

The first module, harmonic group detection (HGD), 
receives a raw polyphonic music signal and returns a set 
of candidate harmonic groups, composed of 
harmonically related spectral peaks, and their respective 
energies. Then, group trajectories, formed by 
connecting consecutive groups with similar base 
frequencies, are created in the harmonic group trajectory 
construction (HGTC) module. 

The resulting trajectories are then segmented, based on 
frequency and energy variations, leading to an initial set 
of candidate notes. Since many of the obtained notes are 
irrelevant, short-duration, low-energy and octave-related 
notes are eliminated. Finally, the notes comprising the 
detected melody are extracted by selecting the most 
intense notes at each time. 

For the sake of visualization simplicity, we will 
illustrate the method with a simple example: a 
monophonic saxophone riff. 

  

Raw Musical Signal

Melody Detection System

HGD HGTC
Trajectory

Segmentation
Note

Elimination
Melody

Extraction

Melody Notes

 

Figure 1: Melody detection system overview. 
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2.1. Harmonic Group Detection 

In the first stage of the algorithm, the goal is to capture 
a set of candidate harmonic groups, which constitute the 
basis of possible future notes. The HGD algorithm 
receives as input a raw music signal (monaural, 
sampling frequency fs = 22050 Hz, 16 bits quantization) 
and outputs a set of harmonic groups, characterized by 
their fundamental frequencies and energies. 
Since we are interested in the spectral content of the 
sound wave, the signal must be represented in the 
frequency domain. A typical way to accomplish this 
task is by applying the Discrete Fourier Transform 
(DFT) to the temporal signal. However, the DFT is only 
suited for stationary signals, i.e., signals that always 
have the same frequency content throughout time. This 
calls for a windowed version of the DFT: the 
Short-Time Frequency Transform (STFT) [13]. Here, 
the main idea is to divide the signal into a set of time 
frames and calculate the DFT for each of those frames. 
We define a frame length of 20 ms, so that stationarity 
can be assumed. This length is also usually considered a 
good trade-off between temporal and frequency 
resolution. The corresponding number of samples per 
frame is N = 441. In order to allow for a smooth 
transition between frames, 50% frame overlap is 
employed.  

A simple division of the signal into frames is the same 
as multiplying it by a sliding rectangular window. 
However, this window leads to significant spectral 
leakage. Therefore, we use a Hamming window instead, 
which is characterized by a good trade-off between 
spectral resolution and leakage [13].  

In order to reduce the frequency interval, the frame data 
is zero-padded. Zero-padding does not improve 
resolution but improves single peak location accuracy, 
which is important for obtaining more accurate peak 
frequencies. Furthermore, the DFT is performed more 
efficiently with the Fast Fourier Transform (FFT) 
algorithm, which is optimized for speed when the 
number of samples is a power of 2. Therefore, we add 
the number of zeros that is necessary to obtain 4096 
samples, leading to a frequency interval of 5.38 Hz, 
which seems adequate. In fact, the melody is usually in 
a mid-range frequency, above 100 Hz. Since the 
frequency difference between A2 (110Hz) and A2# 
(116.54 Hz) is above our threshold, the defined interval 
seems appropriate. Other authors improve peak location 
accuracy by spectral peak interpolation [10, 12]. 

After defining a windowed, zero-padded frame, its 
magnitude spectrum is obtained via the FFT. 
Additionally, we convert the spectrum to dB units, 
taking its logarithm. The reason for doing this is that we 
found experimentally that spectral peaks show up more 
clearly in the logarithmic magnitude spectrum.  

Next, we find peaks in the magnitude spectrum, based 
on the assumption that the fundamental frequencies 
present in the signal correspond to clear peaks in the 
spectrum. However, unlike Serra [12], we do not find 
only the most prominent peaks. Instead, we look for all 
spectral peaks. This is motivated by the observation 
that, sometimes, there are important peaks whose 
prominence is reduced due to spectral interference from 
the spectra of other sources. As a consequence of 
looking for all peaks, their resulting number will be 
significantly higher. However, this is not a major 
concern, since, as we will refer shortly, we keep only 
the most important harmonic groups. 

After detecting all spectral peaks, we obtain a set of 
candidate harmonic groups, found by grouping together 
harmonically related peaks. These groups are 
characterized by their fundamental frequencies and 
energies. We start by finding the highest spectral peak. 
As we stated before, many detected peaks are not 
considered. This is accomplished by defining a 
threshold for the minimum peak amplitude. Thus, we 
define the minPeakDifference parameter, which 
determines the minimum peak amplitude in comparison 
to the maximum amplitude peak found (see Algorithm 
1). Only the peaks that keep this requirement are 
considered as fundamental frequency candidates. Then, 
for each candidate fundamental frequency, ff, we find all 
the peak frequencies that are harmonically related to it. 
A given peak is in harmonic relation to a candidate peak 
if its frequency is in the range (1): 

12

5.0

2,)(; =






 ⋅⋅⋅
rrffk

r

ffk
 (1) 

where r is the ratio for calculating frequencies 
corresponding to half semi-tones variations and k stands 
for the k-th harmonic of the fundamental frequency ff.  

Once we have got all the harmonic groups, we compute 
their respective energies by summing up the amplitudes 
of the peaks belonging to each group. Since we took the 
logarithmic magnitude of the spectrum, we convert peak 
magnitudes back to their original values by inverting the 
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logarithm. Next, only the groups that have enough 
energy are kept. To accomplish this task, we compute 
the maximum group energy, maxHGEn, and obtain the 
minimum allowed group energy, minHGEn, using the 
minimum energy ratio parameter, minEnRatio.  We then 
eliminate all the groups whose energies are below this 
threshold. Finally, the energies of the harmonic groups 
in all frames are normalized to the [0; 100] interval.  

This algorithm is summarized in Algorithm 1. 
Parameter definition is presented in Table 1.  

 
 
1. Get frame data, x 

1.1. Multiply frame by Hamming window 
1.2. Zero-pad accordingly 

2.Get the logarithmic magnitude spectrum 
2.1. X = 20log10[FFT(x)] 

3. Detect spectral peaks 
4. Get candidate harmonic groups 

4.1. Determine minimum allowed peak value 
found 

 - maxPeak � maximum peak value 
 - minPeak � maxPeak - minPeakDifference 
4.2. For all peaks 

4.2.1. If peak magnitude ≥ minPeak 
a) Get peak frequency 
b) Create harmonic group 

- Get all harmonics peaks of the base 
peak frequency 

c) Calculate harmonic group energy 
- Group energy � sum of all peak 

amplitudes 
4.3. Keep only groups with enough energy 

4.3.1. Determine minimum allowed group 
energy 
- maxHGEn � maximum harmonic 
group energy 

- minHGEn � maxHGEn × minEnRatio  
4.3.2. If group energy < minHGEn, eliminate 

group 
4.4. Normalize harmonic group energies to the  

[0; 100] interval 
5. Return harmonic group fundamental frequencies and 

energies 
 

Algorithm 1: Harmonic group detection. 

The described procedure is illustrated in Figure 2. The 
top picture presents a 20ms temporal frame of a 

monophonic saxophone riff, as referred above, and the 
bottom one shows the corresponding logarithmic 
magnitude spectrum, with the candidate harmonic group 
peaks marked. 

 

Parameter Name Parameter Value 

frame length 20 ms 

FFT size 4096 

frame overlap 50% 

window type Hamming 

minPeakDifference 35dB 

minEnRatio 0.2 

Table 1: HGD parameters. 
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Figure 2: Illustration of the HGD algorithm. 

Unlike automatic music transcription systems, this 
algorithm does not deal with the well known and 
complex, “octave problem”. In fact, at this stage it is not 
important to analyze if a given harmonic group 
corresponds to a real note or appears as a ghost note, 
whose fundamental frequency is a harmonic of some 
real note, a few octaves below. Some of the ghost notes 
will be eliminated already at this stage based on the 
energy threshold for harmonic groups, whereas others 
will be eliminated in the following stages of the melody 
detection algorithm. 
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2.2. Trajectory Construction 

The second stage of the melody detection algorithm 
aims at creating a set of harmonic group trajectories, 
formed by connecting consecutive groups with similar 
fundamental frequencies. The idea is to find regions of 
stable fundamental frequencies, which indicate the 
presence of musical notes. The HGTC algorithm 
receives as input a set of harmonic groups, characterized 
by their fundamental frequencies and energies, and 
outputs a set of group trajectories, which constitute the 
basis of the final melody notes.  

We follow rather closely Serra’s peak continuation 
algorithm [12]. However, our algorithm has one, yet 
significant, difference with the original one: instead of 
finding regions of stable sinusoids, we only find regions 
of stable fundamental frequency candidates, in the same 
way as Martins does [10]. Therefore, though the basic 
idea is the same, our algorithm is much lighter than 
Serra’s. Another important point is that we first quantize 
frequencies to the closest MIDI note. We found 
experimentally that the algorithm performed better this 
way. One reason for this seems to come from the fact 
that the location of peaks oscillates somewhat due to 
spectral interference from other sources and, possibly, 
leakage effects. We found that peak continuation based 
on MIDI note numbers allows for a more robust 
trajectory build up. Furthermore, the representation of 
notes using MIDI numbers simplifies an eventual 
representation of the signal in MIDI format (e.g., for 
generation of a MIDI file). 

The trajectory construction algorithm is described with 
detail in Algorithm 2.  

This algorithm is based on three parameters, presented 
in Table 2. The first one, maxSTDev, represents the 
maximum frequency deviation in semi-tones for 
continuing trajectories. We assign it a value of one 
semi-tone, motivated by the fact that some songs 
comprise glissando and vibrato regions, as well as by 
the frequency oscillations that result from spectral 
interference. Therefore, in this way, all these 
phenomena are kept within a common trajectory, 
instead of being separated into a number of different 
trajectories, e.g., one trajectory for each note that one 
glissando may traverse. The drawback of allowing a 
larger frequency deviation is that a single trajectory can 
contain more than one note. This is the reason why we 
perform trajectory segmentation, in the next stage of the 
melody detection algorithm. 

 
1. Quantize frequencies to the closest MIDI note 

numbers 
2. Create initial trajectories  

2.1. Use the note numbers, peak frequencies and 
amplitudes of the harmonic groups in the first 
non-empty frame 

3. For all frames 
3.1. Get the note numbers of all harmonic groups 

in the current frame 
3.2. For all non-finished trajectories 

3.2.1. Get all the note numbers in the current 
frame that may continue the present 
trajectory, i.e., note numbers that are 
within the maxSTDev range, comparing 
to the last note number in the current 
trajectory 

3.2.2. Sort possible note numbers in ascending 
distance order 

3.2.3. For all possible note numbers and while 
no continuation found: 
a) If the present note number does not 

have any closer trajectory, use it to 
continue the present trajectory (in 
case of tie, use average note numbers)  

b) Otherwise, try the next note number 
3.2.4. If the trajectory is continued 

a) Update trajectory length 
b) Add note number, peak frequency and 

amplitude to it 
3.2.5. Otherwise 

a) Increment the number of inactive 
frames, numSleep 

b) If numSleep ≥ maxSleepTime 
 Stop trajectory 

3.3. For all stopped trajectories 
3.3.1. If length < minTrajLen 

a) Eliminate trajectory 
3.3.2. Otherwise 

a) Mark trajectory as finished 
3.4. For all non-continued note numbers 

3.4.1. Create new trajectory, initialized with 
the present note number, peak frequency 
and amplitude  

4. Return all finished trajectories 
 

Algorithm 2: Harmonic group trajectory construction. 

The second parameter, maxSleepTime, specifies the 
maximum number of frames where a trajectory can be 
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inactive, i.e., when no continuation peaks are found. If 
this number is exceeded, the trajectory is stopped. 

The last parameter, minTrajLen, controls the minimum 
trajectory length. Therefore, all finished trajectories that 
are shorter then this threshold, are eliminated. 

 

Parameter Name Paramater Value 

maxSTDev 1 semi-tone 

maxSleepTime  5 

minTrajLen 9 

Table 2: HGTC parameters. 

The described procedure is illustrated in Figure 3, for 
our saxophone riff example. There, we can see that 
some of the obtained trajectories comprise glissando 
regions. Also, some of the trajectories include more than 
one note and should, therefore, be segmented. 
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Figure 3: Illustration of the HGTC algorithm. 

2.3. Trajectory Segmentation 

As we mentioned previously, the trajectories that result 
from the HGTC algorithm may contain more than one 
note and, therefore, must be segmented. This is the task 
of the third stage of the melody detection method. The 
trajectory segmentation algorithm receives as input a set 
of harmonic group trajectories and outputs a set of 
segmented trajectories, i.e., note candidates.  

 
1. Set initial parameters for splitting  

1.1. lastNoteNumber � first note number in the 
trajectory 

1.2. currentNoteDuration � 1 
2. For all frames covered by the trajectory 

2.1. noteNumber � current frame note number 
2.2. If noteNumber ≠ lastNoteNumber (possible 

note transition) 
2.2.1. Find a sequence of frames with note 

noteNumber 
a) numCons � number of consecutive 

frames where noteNumber is kept  
2.2.2. finalNoteNumber � note number 

corresponding to the frame where the 
sequence in 2.2.1. changed 

2.2.3. If numCons > minTrajLen and 
currentNoteDuration > minTrajLen 
a) split trajectory  

2.2.4. Otherwise, if finalNoteNumber ≠ 
lastNoteNumber and 
currentNoteDuration  ≥ minTrajLen 
a) split trajectory  

2.2.5. Otherwise 
a) Sequence is noise or modulation � 

do not split  
b) Advance to the next frame  
c) Increment currentNoteDuration or 

reset it if finalNoteNumber ≠ 
lastNoteNumber (possible glissando) 

d) lastNoteNumber � noteNumber  
2.3. If split trajectory 

2.3.1. Add current frame number to the 
segmentation indexes vector 

2.3.2. currentNoteDuration � 1 
2.4. Otherwise 

2.4.1. Increment currentNoteDuration 
2.5. lastNoteNumber � noteNumber 

3. Split trajectory based on the saved segmentation 
indexes 

4. For each sub-trajectory, i.e., note candidate 
4.1. trajectoryNoteNumber � most frequent note 

in all the frames of the trajectory (in case of 
tie, select the one with the highest energy) 

5. Return segmented note candidates 
 

Algorithm 3: Trajectory frequency segmentation. 

Two types of segmentation have to be conducted. The 
most intuitive one is frequency segmentation, where the 
goal is to separate all the different frequency notes that 
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are present in the same trajectory. The other one, energy 
segmentation, aims at separating consecutive notes that 
have the same fundamental frequencies, which the 
HGTC algorithm may have interpreted as forming only 
one note. This requires segmentation based on energy 
minima, which mark the limits of each note. 

Algorithm 3 describes the procedure carried out for 
frequency segmentation. The main idea is to find 
sufficiently long sequences of the same note number. 
Only then trajectories are segmented. When note 
transitions are found but the current note sequence is not 
long enough, i.e., larger than minTrajLen (see Table 2), 
the trajectory is not segmented, since it may correspond 
to the start of a glissando region. Furthermore, when we 
find short sequences delimited by the same note 
number, e.g., {70, 71, 71, 71, 71, 70}, these are 
interpreted as possible modulation regions, and so no 
segmentation takes place.  

After frequency segmentation, the obtained candidate 
notes must be analyzed so as to check whether they 
should be further divided. In fact, there may be 
consecutive distinct notes at the same fundamental 
frequency that, erroneously, form a unique long note. In 
this situation, those notes must be divided.  In order to 
accomplish this task, energy segmentation takes place, 
according to Algorithm 4. The main idea is to find clear 
energy minima that suggest the presence of more than 
one note. This is implemented using a recursive 
procedure.  

The algorithm uses two parameters: maxVpr and 
minVpd (Table 3). The maxVpr parameter defines the 
maximum valley-peak ratio, i.e., the maximum ratio 
between some local minimum and local maximum 
under analysis. Its value is set to 0.5, i.e., any minimum 
must be at most half the maximum under consideration. 
As for the minVpd parameter, it represents the minimum 
absolute valley-peak distance and is set to 20 (recall that 
the energy values were normalized to the [0; 100] 
interval). The goal of this parameter is to prevent 
erroneous segmentations when local minima have very 
small values, e.g., minimum value is 5 and maximum 
value is 20. 

Finally, after all notes are segmented, their onset and 
offset times are adjusted. For each note, we get its 
maximum energy value and then define the onset as the 
first frame were the energy rises above 10% of the 
maximum energy found, a value defined in the onset 
energy threshold parameter, onsetEnThr. 

1. Find all local maxima and minima in the trajectory 
energy  

2. Create empty list of frame indexes for segmentation  
2.1. segmIndexes � {} 

3. Call the recursive procedure Energy Segmentation, 
with the obtained maxima and minima 

3.1. segmIndexes � Energy Segmentation (local 
maxima and minima, segmIndexes, minPvr, 
minPvd) 
3.1.1. The procedure returns the final list of 

frame indexes for segmentation, 
segmIndexes 

4. Split trajectory based on the obtained segmentation 
frame indexes 

5. Return segmented note candidates 
 
  
Energy Segmentation 
 
1. Find the global minimum 

1.1. globMin � value of the global minimum 
2. Find left and right side maxima, and respective 

distances and ratios regarding globMin 
2.1. Left side: 

2.1.1. maxL � maximum peak to the left of 
the global minimum 

2.1.2. distL � | globMin – maxL | 
2.1.3. ratioL � globMin / maxL 

2.2. Right side: 
2.2.1. maxR � maximum peak to the right of 

the global minimum 
2.2.2. distR � | globMin – maxR | 
2.2.3. ratioR � globMin / maxR 

3. If ratioL ≤ maxVpr and distL ≥ minVpd and ratioR ≤ 
maxVpr and distR ≥ minVpd 

3.1. Mark global minimum frame number as 
segmentation point 
3.1.1 Add it to segmIndexes list 

4. Call Energy Segmentation for left and right vectors 
4.1. Divide local maxima and minima vectors into 

two sub-vectors: left side and right side of the 
minimum 

4.2. Call Energy Segmentation with the left vector 
4.3. Call Energy Segmentation with the right 

vector 

Algorithm 4: Trajectory energy segmentation. 

The procedure is the same for the offsets, i.e., the note 
offset corresponds to the first frame where the energy 
rises above 10% of the maximum energy, starting from 
the end. 
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Parameter Name Parameter Value 

maxVpr 0.5 

minVpd 20 

onsetEnThr 0.1 

Table 3: Trajectory energy segmentation parameters. 

Figure 4 illustrates trajectory segmentation, using the 
initial trajectories from the HGTC algorithm (Figure 3). 
The obtained notes are depicted with thick lines. We can 
see that glissando and modulation regions are properly 
dealt with, except for two notes that start approximately 
at time 1.5s. In fact, in those notes the final fundamental 
frequency (ff) has a lower number of occurrences than 
the initial one, because the steady part of the note (final 
ff) is shorter than the glissando region. This happened 
because the HGTC algorithm could not find any 
additional peaks for continuing them, as a result of their 
low energies compared to the most intense note. 
Anyhow, this is not a problem since these notes will not 
make part of the final melody because of their low 
energy levels. Furthermore, this situation only occurs in 
the upper harmonics of very short notes with glissando, 
which reduces its relevance. 
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Figure 4: Illustration of the trajectory segmentation 
algorithm. 

2.4. Note Elimination 

The objective of the fourth stage of the melody 
detection algorithm is to delete some of the note 

candidates, based on their energies, durations and on the 
analysis of octave relations. The note elimination 
algorithm receives as input a set of note candidates and 
outputs a reduced set of notes, relevant for melody 
extraction.  

First, low-energy notes are deleted. A note is 
low-energy if its average energy is below 
minAvgNoteEnergy and if the number of frames whose 
energy is above that threshold is not enough, i.e., below 
minNumSuffEnergy. Next, all the notes whose duration 
is below minTrajLen, i.e., which are too short, are also 
deleted. Finally, we look for octave relations between 
all notes.  If two notes have approximately the same 
onset and offset times and are harmonically related, it is 
possible that the higher one is just a harmonic of the 
lower one. Therefore, we compare their respective 
energy levels in order to take a decision: if the energy of 
the higher note is less than half the energy of the lower 
note, the higher one is eliminated. The octave energy 
threshold is defined in the minOctRatio parameter.  

 
 
1. For all note candidates 

1.1. Eliminate low-energy notes 
1.1.1. If average energy < minAvgNoteEnergy 

and number of frames above 
minAvgNoteEnergy < 
minNumSuffEnergy 
a) Delete note 

1.2. Eliminate short-duration notes 
1.2.1. If note length < minTrajLen 

a) Delete note 
1.3. Eliminate octaves 

1.3.1. Look for harmonically related notes 
with common onsets and offsets 
(tolerance for onset and offset deviation 
is maxSleepTime) 

1.3.2. If higher note energy < lower note 
energy × minOctRatio 
a) Delete note 

2. Return reduced set of notes. 
 

Algorithm 5: Note elimination. 

This algorithm is summarized in Algorithm 5. 
Parameter definition is presented in Table 4. Figure 5 
illustrates note elimination, based on the note candidates 
of Figure 4. The obtained notes are depicted with thick 
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lines. We can see that many of the note candidates are 
eliminated at this point. 

 

Parameter Name Parameter Value 

minAvgNoteEnergy 10 

minNumSuffEnergy 5 

minOctRatio 0.5 

Table 4: Note elimination parameters. 
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Figure 5: Illustration of the note elimination algorithm. 

2.5. Melody Extraction 

In the final stage of the present melody detection 
system, our goal is to obtain a final set of notes 
comprising the melody of the song under analysis. The 
melody extraction algorithm receives as input the set of 
notes returned by the note elimination algorithm and 
outputs the final melody notes.  

This stage of the proposed melody detection system, 
being probably the most important one, is also the most 
difficult one to carry out. In fact, many aspects of 
auditory organization influence the perception of 
melody by humans, for instance in terms of the role 
played by the pitch, timbre and intensity content of the 
signal. In our approach, we do not attack the problem of 
source separation, as would normally be the case. 
Instead, we base our strategy on the assumption that the 
main melodic line is often salient in terms of note 

intensity. As of now, the algorithm for melody 
extraction is just a preliminary one that needs to be 
further worked out. Anyway, it showed promising 
results, as will be discussed shortly. 

 
 
1. Segment signal based on time intersections between 

consecutive notes 
2. For all segments 

2.1. Get average energy of each note in the current 
segment 

2.2. Delete low frequency notes 
2.1.2. If noteNumber < minNoteNumber 

a) Delete note 
2.3. Keep only the numTop most intense notes  

2.3.1. Sort notes by descending average 
energy order 

2.3.2. Keep first  numTop notes 
3. Delete non-dominant notes 

3.1. For all notes 
3.1.1. durationNumTop � number of frames 

where the current note is in the numTop 
most intense notes 

3.1.2. durationFirst � number of frames 
where the current note is the most 
intense one 

3.1.3. lenNote � total number of frames of the 
current note 

3.1.4. If durationNumTop / lenNote < 
minPercDur or  
durationFirst < minTrajLen 
a) Delete note 

4. Do not allow any simultaneous notes 
4.1. Truncate notes that end after the next note 

starts 
4.2. Delete notes included in larger duration notes 
4.3. For notes with approximate onsets and offsets, 

keep only the most intense one (tolerance for 
onset and offset deviation is maxSleepTime) 

5. Return final melody notes. 
 

Algorithm 6: Melody Extraction. 

This algorithm starts by analyzing intersections between 
notes. The beginning and end of intersection regions is 
used to segment the signal, as illustrated in Figure 6, 
where si stands for the i-th obtained segment.  

Then, for each segment, we determine the three most 
intense notes (set on the numTop parameter), based on 
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the average energy of each note in each segment. Notes 
below MIDI note number 50 (143.83 Hz), a value set in 
the minNoteNumber parameter, are excluded. This 
procedure is motivated by the fact that the notes 
comprising the melody are, usually, in a middle 
frequency range.  

Time(s)
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r

s1 s2 si

 

Figure 6: Segmentation based on note intersection. 

Next, we eliminate all the notes that are not dominant, 
i.e., that are not in the three most intense notes for more 
than 2/3 (minPercDur parameter) of their total number 
of frames or do not have the highest energy for more 
than minTrajLen frames. Finally, we do not allow 
simultaneous notes. Therefore, we truncate notes that 
end after the next note starts, eliminate notes included in 
larger duration notes and, for notes with approximate 
onsets and offsets, keep only the most intense one.  

The melody extraction algorithm is summarized in 
Algorithm 6. Parameter definition is presented in Table 
5. Figure 7 illustrates melody extraction, based on the 
example in Figure 5. The final melody notes are 
depicted with thick lines. 

 

Parameter Name Parameter Value 

MinNoteNumber 50 

NumTop 3 

MinPercDur 2/3 

Table 5: Melody extraction parameters. 
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Figure 7: Illustration of the melody extraction 
algorithm. 

3. EXPERIMENTAL RESULTS 

One difficulty regarding the evaluation of MIR systems 
results from the absence of standard test collections and 
benchmark problems. Therefore, we created our own 
test database, having care regarding its diversity and 
musical content. We collected excerpts of about 6 
seconds from 12 songs, encompassing several different 
genres. The selected songs contain a solo (either vocal 
or instrumental) and accompaniment parts (guitar, bass, 
percussion, other vocals, etc.).  

The obtained results are summarized in Table 6. There, 
“V” stands for vocals and “I” stands for instrumental. 
Figure 8 shows an example of the results of the melody 
detection system for an excerpt of the song “Thank 
You”, by Dido. In this example, we can see that the 
correct notes (thick lines) match the obtained melody 
notes (thin continuous lines) in most of the cases. The 
undetected notes are marked with circles. As can be 
seen, the three missing notes were present in the notes 
obtained after elimination (dotted lines). One of the 
missing notes, approximately at time 5s, corresponds to 
erroneous trajectory segmentation. 

The detected melody notes were compared with the 
correct notes, previously hand-labeled. In the absence of 
the melody line, the system detected the dominant 
accompaniment part, since sound sources are not 
discriminated.  This can be seen in Figure 8, by the thin 
continuous lines. This is consistent with the way 
humans seem to memorize melodies: a mix of solo 
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regions with accompaniment regions, in the absence of a solo.  

Song Title Genre Solo 
Type 

#Total 
Notes 

#Correct Notes #Correct Notes 
after Elimination 

Pachelbel’s Kanon Classical I 16 10 (62.5%) 15 (93.75%) 

Handel’s Hallelujah Choral V 15 n. r. 14 (93.33%) 

Enya – Only Time Neo-Classical V 11 8 (72.72%) 10 (90,9%) 

Dido – Thank You Pop V 16 13 (81.25%) 16 (100%) 

Ricky Martin – Private Emotion Pop V 10 n. r. 9 (90%) 

Avril Lavigne – Complicated Pop/Rock V 14 n.r. 11 (78.57%) 

Rua Dona Margarida Jazz I 19 19 (100%) 19 (100%) 

Mambo Kings – Bella Maria de Mi 
Alma 

Bolero I 12 n. r. 9 (75%) 

Compay Segundo – Chan Chan Latin V 10 n. r. 9 (90%) 

Juan Luis Guerra – Palomita Blanca Rumba V 10 8 (80%) 10 (100%) 

Battlefield Band – Snow on the 
Hills 

Scottish Folk I 26 13 (50%) 26 (100%) 

Saxophone riff (monophonic) I 6 6 (100%) 6  (100%) 

Table 6: Results of the melody detection system. 
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Figure 8: Detected melody for “Dido - Thank You” 

excerpt. 

However, we decided to ignore the notes where the 
accompaniment part dominates, in the same way as 
Goto does [7]. In order to extract only the melody, we 
would need a means of separating notes according to 
their sources. The most intuitive, but complex, way to 
accomplish this task would be to use timbre models. 
Other possibilities would be to separate notes according 
to their frequency ranges, energy levels (since the 
intensity of a solo varies usually in a smooth way) or 
duration of notes (e.g., it is not likely that a short 
duration note in the middle of two long notes belongs to 
the same source as them). 

In our test cases, we observed that some of the notes 
were excessively segmented and others were shorter 
than the original ones (fortunately, a small number of 
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them). This resulted from noise in both the frequency 
and energy sequences, as well as frequency deviations 
in the HGTC algorithm, which lead to excessive 
trajectory segmentation. The noise in the energy 
sequences results often from spectral collision with the 
spectra of percussion instruments. One possible way to 
deal with this issue would be to smooth the frequency 
and energy sequences before segmentation. Another 
possibility would be to filter out percussion sounds from 
the mixture, which seems to be a challenging task. We 
also observed a few semi-tone deviations (once again, a 
small number). These errors resulted from the previous 
one and so should diminish after we deal with the 
problems coming from segmentation. We decided to 
ignore these small errors since our goal is to check 
whether a note is present or not, no matter in how many 
sub-notes the algorithm divides it. These errors can be 
reduced as was referred. 

We can see that the algorithm could not find any 
reasonable melody in some excerpts (“#Correct Notes = 
n. r.: not reasonable”). However, in the cases where the 
melody stands clearly out of the background and 
percussion is not very intense, good results were 
achieved, which matches Goto’s results [7]. There is 
even one jazz excerpt where all the notes were correctly 
detected. 

In spite of the described limitations, it is interesting to 
note that in all of the cases tested, most of the notes 
comprising the melody were still present after the note 
elimination stage. Therefore, when QBH is a final goal, 
we could follow an approach similar to Song’s, i.e., 
matching a query to the whole set of notes after note 
elimination, by finding a path in it [14]. This hypothesis 
will be evaluated in the future. 

We also tested our system with a simple monophonic 
saxophone riff. In this, as well as other monophonic test 
cases not reported here, the results were very good in 
terms of detection of glissandos, vibratos and note 
onsets and offsets. Consequently, we hope our system 
could be used as a robust monophonic pitch detection 
tool. 

4. CONCLUSIONS 

We have presented a system for melody detection in 
polyphonic music signals. This is a main issue for MIR 
applications, such as QBH “real-world” music 
databases. The work conducted in this field is presently 
restricted to the MIDI realm, and so we guess we make 

an interesting contribution to the area, though our 
results were not very accurate and general for the time 
being. However, the achieved results are encouraging, 
since we have not exploited the full potential of our 
approach yet. Furthermore, to our knowledge, only Goto 
[7] addresses the issue of melody detection in 
polyphonic music, but without trying to explicitly 
extract notes. Also, our system is reasonably simple and 
light, except for the harmonic group detection module, 
due to the DFT analysis. 

Regarding future work, we plan to further work out 
some of the described limitations, namely the melody 
extraction algorithm.  Additionally, we plan to try out a 
different approach: evaluating Independent Component 
Analysis capability for source separation. The main idea 
would be to separate the solo and accompaniment parts 
and then detect the melody in the solo part. 
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