
Audio Engineering Society

Convention Paper
Presented at the 116th Convention
2004 May 8–11 Berlin, Germany

This convention paper has been reproduced from the author's advance manuscript, without editing, corrections, or consideration
by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request
and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org.
All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the
Journal of the Audio Engineering Society.

A Methodology for Detection of Melody in
Polyphonic Musical Signals

Rui Pedro Paiva1, Teresa Mendes 2 and Amílcar Cardoso3

1 CISUC (Center for Informatics and Systems of the University of Coimbra), Department of Informatics
Engineering, University of Coimbra (Polo II), Pinhal de Marrocos, P3030, Coimbra, Portugal

ruipedro@dei.uc.pt

2 CISUC (Center for Informatics and Systems of the University of Coimbra), Department of Informatics
Engineering, University of Coimbra (Polo II), Pinhal de Marrocos, P3030, Coimbra, Portugal

tmendes@dei.uc.pt

3 CISUC (Center for Informatics and Systems of the University of Coimbra), Department of Informatics
Engineering, University of Coimbra (Polo II), Pinhal de Marrocos, P3030, Coimbra, Portugal

amilcar@dei.uc.pt

ABSTRACT

We present a bottom-up method for melody detection in polyphonic musical signals. Our approach is based on the
assumption that the melodic line is often salient in terms of note intensity (energy). First, trajectories of the most
intense harmonic groups are constructed. Next, note candidates are obtained by trajectory segmentation (in terms of
frequency and energy variations). Too short, low-energy and octave-related notes are then eliminated. Finally, the
melody is extracted by selecting the most important notes at each time, based on their intensity.

We tested our method with excerpts from 12 songs encompassing several genres. In the songs where the solo stands
out clearly, most of the melody notes were successfully detected. However, for songs where the melody is not that
salient, the algorithm performed poorly. Nevertheless, we could say that the results are encouraging.

1. INTRODUCTION

As a result of recent technological innovations, there
has been a tremendous growth in the Electronic Music
Distribution (EMD) industry. Factors like the
widespread access to the Internet, bandwidth increasing

in domestic accesses or the generalized use of compact
audio formats with CD or near CD quality, such as mp3,
have given a great contribution to that boom. Presently,
it is expected that the number of digital music archives,
as well as their dimension, grow significantly in the near
future, both in terms of music database size and in
number of genres covered.

Paiva et al. Detection of Melody

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 2 of 14

However, any large music database, or, generically
speaking, any multimedia database, is only really useful
if users can find what they are looking for in an efficient
manner. Today, whether it is the case of a digital music
library, the Internet or any music database, search and
retrieval is carried out mostly in a textual manner, based
on categories such as author, title or genre. This
approach leads to a certain number of difficulties,
namely in what concerns database search in a
transparent and intuitive way. Therefore, in order to
overcome the limitations described, research is being
conducted in an emergent and promising field called
Music Information Retrieval (MIR).

Query-by-humming (QBH) [1, 4, 6] is a particularly
intuitive way of searching for a musical piece, since
melody humming is a very natural habit of humans.
Therefore, several technologies have been developed
that aim to permit such function. However, presently,
this work is being carried out only in the MIDI realm,
which places important usability questions. In fact,
usually we look for recorded songs, which can be
obtained from CDs or are stored in audio formats such
as mp3. Looking for musical pieces in the MIDI format
is a much easier problem, since this is a symbolic
format where all the notes, as well as their timings, are
already available. The main issues are, then, to extract
the notes from the hummed query (a well-known
monophonic pitch extraction problem,) and to match the
query to the melody, usually available in the MIDI file
(an information retrieval problem).

Querying “real-world” polyphonic recorded musical
pieces requires that some sort of melody representation
be extracted beforehand, which creates many more
difficulties. Polyphonic musical signals can be
converted to symbolic formats either manually or
automatically. Manual conversion requires, obviously, a
tremendous amount of man-work and specialized skills.
On the other hand, analyzing polyphonic musical
signals is a rather complex task, since we can have
many different types of instruments playing at the same
time, whose spectra interfere severely with each other.
This fact makes it very complicated to separate the
different sound sources.

Source separation is a major concern for polyphonic
music analysis and automatic music transcription
systems, and has no general solution yet. One way to
approach this problem is to build computer models that
emulate human auditory processing. The human brain
processes auditory information in a way called

“auditory scene analysis” [3]. As an attempt to replicate
human behavior, some work has been carried out
aiming to develop computational auditory scene
analysis systems. The results obtained are not very
accurate yet and are only acceptable for simpler or
well-constrained problems. Namely, Ellis [5] tries to
analyze a sound signal by means of competitive
theories, where each of them proposes a combination of
sounds that might have produced the resulting sound.
Sound source models are used as a basis for the
proposed method. Bello et al [2] and Martin [9] have
used computational blackboard systems for simple
automatic music transcription. The blackboard system is
composed of a global database, where hypotheses are
proposed and developed, a scheduler that determines
how hypotheses are developed, and knowledge sources,
corresponding to experts. Scheirer [11] proposes a
model based on perceptual issues, using dynamic
clustering of comodulation data. In contrast to the other
systems referred, this model is designed for analysis of
complex music. Klapuri [8] proposed a method for
multi-pitch estimation where the musical signal is
analyzed at separate frequency bands. Namely, 18
logarithmic distributed bands from 50 Hz to 6 kHz are
used. Then at each band, a fundamental frequency
likelihood vector is calculated. Finally, the results from
each band are combined to yield global pitch
likelihoods. They report results that outperform the
average of ten trained musicians. Other models impose
constraints in the number of instruments present or the
harmonic interaction between them, as referred in [7].

Melody detection can be seen as a sub-problem of
polyphonic pitch detection and source separation, where
the aim to detect the main melodic line, regardless of
the other sources present. This requires the detection of
the dominant notes at each time, not the whole set of
notes present. For instance, when we hear a pop song,
we have vocals, guitar, bass, percussion and so forth.
Yet, in spite of all that information, our brains still can
retain the main melodic line.

Only little work has been carried out in the particular
problem of melody detection in “real-world” songs. One
interesting approach is the one followed by Goto [7].
The author uses a probabilistic model for the detection
of melody and bass lines. The signal is first band-pass
filtered and then a probability density function (pdf) is
computed for each signal component. The pdfs are
generated from a weighted-mixture of tone models of all
possible fundamental frequencies. The more dominant a
model is in the PDF, the more likely the fundamental

Paiva et al. Detection of Melody

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 3 of 14

frequency belongs to that model. The author compared
the dominant frequencies detected with hand-labeled
marked notes and reports an average rate of 88.4% for
the melodic pitch line.

Song et al [14] use a different approach, based on the
fact that there is no single method that is both accurate
and generic. They argue that their method is more
pragmatic when the final goal is QBH: instead of trying
to extract the melody, they use a mid-level melody
representation, which consists of a sequence of audio
segments where each segment contains a set of note
candidates. Then, they use a variation of dynamic
programming for matching the query with the melody
mid-level representation.

In this paper, we describe a multi-stage bottom-up
method for melody detection, based on sinusoid tracks
[12]. Our approach is laid on the assumption that the
melodic line is often composed of the notes with the
highest intensity (energy). In short, the method works as
follows. The signal is first divided into frames where
stationarity can be assumed. For each frame, we get the
magnitude spectrum and find its spectral peaks. Then,
we define harmonic groups, composed of harmonically
related peaks, and compute the energy of each harmonic
group. We create group trajectories, formed by
connecting consecutive groups with similar fundamental
frequencies. After trajectory creation, note candidates
are obtained by trajectory segmentation and elimination.
Short-duration, low-energy and octave-related notes are
then eliminated. Finally, the melody is extracted by
selecting the most important notes at each time, based
on their intensities.

We tested our system on excerpts of 12 songs,
encompassing several different genres. The obtained
notes were then compared with the correct ones,
previously hand-labeled. In the songs where the solo
stands out clearly, most of the melody notes were

successfully detected. However, for songs where the
melody is not that salient, the algorithm performed
poorly. Yet, we could say that the preliminary results
presented are encouraging.

The following sections describe the work carried out in
this paper. Section 2 describes the melody detection
method. In Section 3, experimental results are presented
and evaluated. Finally, in Section 4, conclusions are
drawn and possible directions for future work are
pointed out.

2. MELODY DETECTION METHOD

Our melody detection algorithm is composed of five
modules, illustrated in Figure 1.

The first module, harmonic group detection (HGD),
receives a raw polyphonic music signal and returns a set
of candidate harmonic groups, composed of
harmonically related spectral peaks, and their respective
energies. Then, group trajectories, formed by
connecting consecutive groups with similar base
frequencies, are created in the harmonic group trajectory
construction (HGTC) module.

The resulting trajectories are then segmented, based on
frequency and energy variations, leading to an initial set
of candidate notes. Since many of the obtained notes are
irrelevant, short-duration, low-energy and octave-related
notes are eliminated. Finally, the notes comprising the
detected melody are extracted by selecting the most
intense notes at each time.

For the sake of visualization simplicity, we will
illustrate the method with a simple example: a
monophonic saxophone riff.

Raw Musical Signal

Melody Detection System

HGD HGTC
Trajectory

Segmentation
Note

Elimination
Melody

Extraction

Melody Notes

Figure 1: Melody detection system overview.

Paiva et al. Detection of Melody

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 4 of 14

2.1. Harmonic Group Detection

In the first stage of the algorithm, the goal is to capture
a set of candidate harmonic groups, which constitute the
basis of possible future notes. The HGD algorithm
receives as input a raw music signal (monaural,
sampling frequency fs = 22050 Hz, 16 bits quantization)
and outputs a set of harmonic groups, characterized by
their fundamental frequencies and energies.
Since we are interested in the spectral content of the
sound wave, the signal must be represented in the
frequency domain. A typical way to accomplish this
task is by applying the Discrete Fourier Transform
(DFT) to the temporal signal. However, the DFT is only
suited for stationary signals, i.e., signals that always
have the same frequency content throughout time. This
calls for a windowed version of the DFT: the
Short-Time Frequency Transform (STFT) [13]. Here,
the main idea is to divide the signal into a set of time
frames and calculate the DFT for each of those frames.
We define a frame length of 20 ms, so that stationarity
can be assumed. This length is also usually considered a
good trade-off between temporal and frequency
resolution. The corresponding number of samples per
frame is N = 441. In order to allow for a smooth
transition between frames, 50% frame overlap is
employed.

A simple division of the signal into frames is the same
as multiplying it by a sliding rectangular window.
However, this window leads to significant spectral
leakage. Therefore, we use a Hamming window instead,
which is characterized by a good trade-off between
spectral resolution and leakage [13].

In order to reduce the frequency interval, the frame data
is zero-padded. Zero-padding does not improve
resolution but improves single peak location accuracy,
which is important for obtaining more accurate peak
frequencies. Furthermore, the DFT is performed more
efficiently with the Fast Fourier Transform (FFT)
algorithm, which is optimized for speed when the
number of samples is a power of 2. Therefore, we add
the number of zeros that is necessary to obtain 4096
samples, leading to a frequency interval of 5.38 Hz,
which seems adequate. In fact, the melody is usually in
a mid-range frequency, above 100 Hz. Since the
frequency difference between A2 (110Hz) and A2#
(116.54 Hz) is above our threshold, the defined interval
seems appropriate. Other authors improve peak location
accuracy by spectral peak interpolation [10, 12].

After defining a windowed, zero-padded frame, its
magnitude spectrum is obtained via the FFT.
Additionally, we convert the spectrum to dB units,
taking its logarithm. The reason for doing this is that we
found experimentally that spectral peaks show up more
clearly in the logarithmic magnitude spectrum.

Next, we find peaks in the magnitude spectrum, based
on the assumption that the fundamental frequencies
present in the signal correspond to clear peaks in the
spectrum. However, unlike Serra [12], we do not find
only the most prominent peaks. Instead, we look for all
spectral peaks. This is motivated by the observation
that, sometimes, there are important peaks whose
prominence is reduced due to spectral interference from
the spectra of other sources. As a consequence of
looking for all peaks, their resulting number will be
significantly higher. However, this is not a major
concern, since, as we will refer shortly, we keep only
the most important harmonic groups.

After detecting all spectral peaks, we obtain a set of
candidate harmonic groups, found by grouping together
harmonically related peaks. These groups are
characterized by their fundamental frequencies and
energies. We start by finding the highest spectral peak.
As we stated before, many detected peaks are not
considered. This is accomplished by defining a
threshold for the minimum peak amplitude. Thus, we
define the minPeakDifference parameter, which
determines the minimum peak amplitude in comparison
to the maximum amplitude peak found (see Algorithm
1). Only the peaks that keep this requirement are
considered as fundamental frequency candidates. Then,
for each candidate fundamental frequency, ff, we find all
the peak frequencies that are harmonically related to it.
A given peak is in harmonic relation to a candidate peak
if its frequency is in the range (1):

12

5.0

2,)(; =

 ⋅⋅⋅
rrffk

r

ffk
 (1)

where r is the ratio for calculating frequencies
corresponding to half semi-tones variations and k stands
for the k-th harmonic of the fundamental frequency ff.

Once we have got all the harmonic groups, we compute
their respective energies by summing up the amplitudes
of the peaks belonging to each group. Since we took the
logarithmic magnitude of the spectrum, we convert peak
magnitudes back to their original values by inverting the

Paiva et al. Detection of Melody

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 5 of 14

logarithm. Next, only the groups that have enough
energy are kept. To accomplish this task, we compute
the maximum group energy, maxHGEn, and obtain the
minimum allowed group energy, minHGEn, using the
minimum energy ratio parameter, minEnRatio. We then
eliminate all the groups whose energies are below this
threshold. Finally, the energies of the harmonic groups
in all frames are normalized to the [0; 100] interval.

This algorithm is summarized in Algorithm 1.
Parameter definition is presented in Table 1.

1. Get frame data, x

1.1. Multiply frame by Hamming window
1.2. Zero-pad accordingly

2.Get the logarithmic magnitude spectrum
2.1. X = 20log10[FFT(x)]

3. Detect spectral peaks
4. Get candidate harmonic groups

4.1. Determine minimum allowed peak value
found

 - maxPeak � maximum peak value
 - minPeak � maxPeak - minPeakDifference
4.2. For all peaks

4.2.1. If peak magnitude ≥ minPeak
a) Get peak frequency
b) Create harmonic group

- Get all harmonics peaks of the base
peak frequency

c) Calculate harmonic group energy
- Group energy � sum of all peak

amplitudes
4.3. Keep only groups with enough energy

4.3.1. Determine minimum allowed group
energy
- maxHGEn � maximum harmonic
group energy

- minHGEn � maxHGEn × minEnRatio
4.3.2. If group energy < minHGEn, eliminate

group
4.4. Normalize harmonic group energies to the

[0; 100] interval
5. Return harmonic group fundamental frequencies and

energies

Algorithm 1: Harmonic group detection.

The described procedure is illustrated in Figure 2. The
top picture presents a 20ms temporal frame of a

monophonic saxophone riff, as referred above, and the
bottom one shows the corresponding logarithmic
magnitude spectrum, with the candidate harmonic group
peaks marked.

Parameter Name Parameter Value

frame length 20 ms

FFT size 4096

frame overlap 50%

window type Hamming

minPeakDifference 35dB

minEnRatio 0.2

Table 1: HGD parameters.

0.2 0.205 0.21 0.215 0.22
-0.4

-0.2

0

0.2

0.4

Time (s)

x(
t)

0 2000 4000 6000 8000 10000
-60

-40

-20

0

20

Freq (Hz)

|X
(k

)|
 (

dB
)

Figure 2: Illustration of the HGD algorithm.

Unlike automatic music transcription systems, this
algorithm does not deal with the well known and
complex, “octave problem”. In fact, at this stage it is not
important to analyze if a given harmonic group
corresponds to a real note or appears as a ghost note,
whose fundamental frequency is a harmonic of some
real note, a few octaves below. Some of the ghost notes
will be eliminated already at this stage based on the
energy threshold for harmonic groups, whereas others
will be eliminated in the following stages of the melody
detection algorithm.

Paiva et al. Detection of Melody

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 6 of 14

2.2. Trajectory Construction

The second stage of the melody detection algorithm
aims at creating a set of harmonic group trajectories,
formed by connecting consecutive groups with similar
fundamental frequencies. The idea is to find regions of
stable fundamental frequencies, which indicate the
presence of musical notes. The HGTC algorithm
receives as input a set of harmonic groups, characterized
by their fundamental frequencies and energies, and
outputs a set of group trajectories, which constitute the
basis of the final melody notes.

We follow rather closely Serra’s peak continuation
algorithm [12]. However, our algorithm has one, yet
significant, difference with the original one: instead of
finding regions of stable sinusoids, we only find regions
of stable fundamental frequency candidates, in the same
way as Martins does [10]. Therefore, though the basic
idea is the same, our algorithm is much lighter than
Serra’s. Another important point is that we first quantize
frequencies to the closest MIDI note. We found
experimentally that the algorithm performed better this
way. One reason for this seems to come from the fact
that the location of peaks oscillates somewhat due to
spectral interference from other sources and, possibly,
leakage effects. We found that peak continuation based
on MIDI note numbers allows for a more robust
trajectory build up. Furthermore, the representation of
notes using MIDI numbers simplifies an eventual
representation of the signal in MIDI format (e.g., for
generation of a MIDI file).

The trajectory construction algorithm is described with
detail in Algorithm 2.

This algorithm is based on three parameters, presented
in Table 2. The first one, maxSTDev, represents the
maximum frequency deviation in semi-tones for
continuing trajectories. We assign it a value of one
semi-tone, motivated by the fact that some songs
comprise glissando and vibrato regions, as well as by
the frequency oscillations that result from spectral
interference. Therefore, in this way, all these
phenomena are kept within a common trajectory,
instead of being separated into a number of different
trajectories, e.g., one trajectory for each note that one
glissando may traverse. The drawback of allowing a
larger frequency deviation is that a single trajectory can
contain more than one note. This is the reason why we
perform trajectory segmentation, in the next stage of the
melody detection algorithm.

1. Quantize frequencies to the closest MIDI note

numbers
2. Create initial trajectories

2.1. Use the note numbers, peak frequencies and
amplitudes of the harmonic groups in the first
non-empty frame

3. For all frames
3.1. Get the note numbers of all harmonic groups

in the current frame
3.2. For all non-finished trajectories

3.2.1. Get all the note numbers in the current
frame that may continue the present
trajectory, i.e., note numbers that are
within the maxSTDev range, comparing
to the last note number in the current
trajectory

3.2.2. Sort possible note numbers in ascending
distance order

3.2.3. For all possible note numbers and while
no continuation found:
a) If the present note number does not

have any closer trajectory, use it to
continue the present trajectory (in
case of tie, use average note numbers)

b) Otherwise, try the next note number
3.2.4. If the trajectory is continued

a) Update trajectory length
b) Add note number, peak frequency and

amplitude to it
3.2.5. Otherwise

a) Increment the number of inactive
frames, numSleep

b) If numSleep ≥ maxSleepTime
 Stop trajectory

3.3. For all stopped trajectories
3.3.1. If length < minTrajLen

a) Eliminate trajectory
3.3.2. Otherwise

a) Mark trajectory as finished
3.4. For all non-continued note numbers

3.4.1. Create new trajectory, initialized with
the present note number, peak frequency
and amplitude

4. Return all finished trajectories

Algorithm 2: Harmonic group trajectory construction.

The second parameter, maxSleepTime, specifies the
maximum number of frames where a trajectory can be

Paiva et al. Detection of Melody

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 7 of 14

inactive, i.e., when no continuation peaks are found. If
this number is exceeded, the trajectory is stopped.

The last parameter, minTrajLen, controls the minimum
trajectory length. Therefore, all finished trajectories that
are shorter then this threshold, are eliminated.

Parameter Name Paramater Value

maxSTDev 1 semi-tone

maxSleepTime 5

minTrajLen 9

Table 2: HGTC parameters.

The described procedure is illustrated in Figure 3, for
our saxophone riff example. There, we can see that
some of the obtained trajectories comprise glissando
regions. Also, some of the trajectories include more than
one note and should, therefore, be segmented.

0 0.5 1 1.5 2 2.5
65

70

75

80

85

90

95

100

Time (s)

M
ID

I n
ot

e
nu

m
be

r

Figure 3: Illustration of the HGTC algorithm.

2.3. Trajectory Segmentation

As we mentioned previously, the trajectories that result
from the HGTC algorithm may contain more than one
note and, therefore, must be segmented. This is the task
of the third stage of the melody detection method. The
trajectory segmentation algorithm receives as input a set
of harmonic group trajectories and outputs a set of
segmented trajectories, i.e., note candidates.

1. Set initial parameters for splitting

1.1. lastNoteNumber � first note number in the
trajectory

1.2. currentNoteDuration � 1
2. For all frames covered by the trajectory

2.1. noteNumber � current frame note number
2.2. If noteNumber ≠ lastNoteNumber (possible

note transition)
2.2.1. Find a sequence of frames with note

noteNumber
a) numCons � number of consecutive

frames where noteNumber is kept
2.2.2. finalNoteNumber � note number

corresponding to the frame where the
sequence in 2.2.1. changed

2.2.3. If numCons > minTrajLen and
currentNoteDuration > minTrajLen
a) split trajectory

2.2.4. Otherwise, if finalNoteNumber ≠
lastNoteNumber and
currentNoteDuration ≥ minTrajLen
a) split trajectory

2.2.5. Otherwise
a) Sequence is noise or modulation �

do not split
b) Advance to the next frame
c) Increment currentNoteDuration or

reset it if finalNoteNumber ≠
lastNoteNumber (possible glissando)

d) lastNoteNumber � noteNumber
2.3. If split trajectory

2.3.1. Add current frame number to the
segmentation indexes vector

2.3.2. currentNoteDuration � 1
2.4. Otherwise

2.4.1. Increment currentNoteDuration
2.5. lastNoteNumber � noteNumber

3. Split trajectory based on the saved segmentation
indexes

4. For each sub-trajectory, i.e., note candidate
4.1. trajectoryNoteNumber � most frequent note

in all the frames of the trajectory (in case of
tie, select the one with the highest energy)

5. Return segmented note candidates

Algorithm 3: Trajectory frequency segmentation.

Two types of segmentation have to be conducted. The
most intuitive one is frequency segmentation, where the
goal is to separate all the different frequency notes that

Paiva et al. Detection of Melody

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 8 of 14

are present in the same trajectory. The other one, energy
segmentation, aims at separating consecutive notes that
have the same fundamental frequencies, which the
HGTC algorithm may have interpreted as forming only
one note. This requires segmentation based on energy
minima, which mark the limits of each note.

Algorithm 3 describes the procedure carried out for
frequency segmentation. The main idea is to find
sufficiently long sequences of the same note number.
Only then trajectories are segmented. When note
transitions are found but the current note sequence is not
long enough, i.e., larger than minTrajLen (see Table 2),
the trajectory is not segmented, since it may correspond
to the start of a glissando region. Furthermore, when we
find short sequences delimited by the same note
number, e.g., {70, 71, 71, 71, 71, 70}, these are
interpreted as possible modulation regions, and so no
segmentation takes place.

After frequency segmentation, the obtained candidate
notes must be analyzed so as to check whether they
should be further divided. In fact, there may be
consecutive distinct notes at the same fundamental
frequency that, erroneously, form a unique long note. In
this situation, those notes must be divided. In order to
accomplish this task, energy segmentation takes place,
according to Algorithm 4. The main idea is to find clear
energy minima that suggest the presence of more than
one note. This is implemented using a recursive
procedure.

The algorithm uses two parameters: maxVpr and
minVpd (Table 3). The maxVpr parameter defines the
maximum valley-peak ratio, i.e., the maximum ratio
between some local minimum and local maximum
under analysis. Its value is set to 0.5, i.e., any minimum
must be at most half the maximum under consideration.
As for the minVpd parameter, it represents the minimum
absolute valley-peak distance and is set to 20 (recall that
the energy values were normalized to the [0; 100]
interval). The goal of this parameter is to prevent
erroneous segmentations when local minima have very
small values, e.g., minimum value is 5 and maximum
value is 20.

Finally, after all notes are segmented, their onset and
offset times are adjusted. For each note, we get its
maximum energy value and then define the onset as the
first frame were the energy rises above 10% of the
maximum energy found, a value defined in the onset
energy threshold parameter, onsetEnThr.

1. Find all local maxima and minima in the trajectory
energy

2. Create empty list of frame indexes for segmentation
2.1. segmIndexes � {}

3. Call the recursive procedure Energy Segmentation,
with the obtained maxima and minima

3.1. segmIndexes � Energy Segmentation (local
maxima and minima, segmIndexes, minPvr,
minPvd)
3.1.1. The procedure returns the final list of

frame indexes for segmentation,
segmIndexes

4. Split trajectory based on the obtained segmentation
frame indexes

5. Return segmented note candidates

Energy Segmentation

1. Find the global minimum

1.1. globMin � value of the global minimum
2. Find left and right side maxima, and respective

distances and ratios regarding globMin
2.1. Left side:

2.1.1. maxL � maximum peak to the left of
the global minimum

2.1.2. distL � | globMin – maxL |
2.1.3. ratioL � globMin / maxL

2.2. Right side:
2.2.1. maxR � maximum peak to the right of

the global minimum
2.2.2. distR � | globMin – maxR |
2.2.3. ratioR � globMin / maxR

3. If ratioL ≤ maxVpr and distL ≥ minVpd and ratioR ≤
maxVpr and distR ≥ minVpd

3.1. Mark global minimum frame number as
segmentation point
3.1.1 Add it to segmIndexes list

4. Call Energy Segmentation for left and right vectors
4.1. Divide local maxima and minima vectors into

two sub-vectors: left side and right side of the
minimum

4.2. Call Energy Segmentation with the left vector
4.3. Call Energy Segmentation with the right

vector

Algorithm 4: Trajectory energy segmentation.

The procedure is the same for the offsets, i.e., the note
offset corresponds to the first frame where the energy
rises above 10% of the maximum energy, starting from
the end.

Paiva et al. Detection of Melody

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 9 of 14

Parameter Name Parameter Value

maxVpr 0.5

minVpd 20

onsetEnThr 0.1

Table 3: Trajectory energy segmentation parameters.

Figure 4 illustrates trajectory segmentation, using the
initial trajectories from the HGTC algorithm (Figure 3).
The obtained notes are depicted with thick lines. We can
see that glissando and modulation regions are properly
dealt with, except for two notes that start approximately
at time 1.5s. In fact, in those notes the final fundamental
frequency (ff) has a lower number of occurrences than
the initial one, because the steady part of the note (final
ff) is shorter than the glissando region. This happened
because the HGTC algorithm could not find any
additional peaks for continuing them, as a result of their
low energies compared to the most intense note.
Anyhow, this is not a problem since these notes will not
make part of the final melody because of their low
energy levels. Furthermore, this situation only occurs in
the upper harmonics of very short notes with glissando,
which reduces its relevance.

0 0.5 1 1.5 2 2.5
65

70

75

80

85

90

95

100

Time (s)

M
ID

I n
ot

e
nu

m
be

r

Figure 4: Illustration of the trajectory segmentation
algorithm.

2.4. Note Elimination

The objective of the fourth stage of the melody
detection algorithm is to delete some of the note

candidates, based on their energies, durations and on the
analysis of octave relations. The note elimination
algorithm receives as input a set of note candidates and
outputs a reduced set of notes, relevant for melody
extraction.

First, low-energy notes are deleted. A note is
low-energy if its average energy is below
minAvgNoteEnergy and if the number of frames whose
energy is above that threshold is not enough, i.e., below
minNumSuffEnergy. Next, all the notes whose duration
is below minTrajLen, i.e., which are too short, are also
deleted. Finally, we look for octave relations between
all notes. If two notes have approximately the same
onset and offset times and are harmonically related, it is
possible that the higher one is just a harmonic of the
lower one. Therefore, we compare their respective
energy levels in order to take a decision: if the energy of
the higher note is less than half the energy of the lower
note, the higher one is eliminated. The octave energy
threshold is defined in the minOctRatio parameter.

1. For all note candidates

1.1. Eliminate low-energy notes
1.1.1. If average energy < minAvgNoteEnergy

and number of frames above
minAvgNoteEnergy <
minNumSuffEnergy
a) Delete note

1.2. Eliminate short-duration notes
1.2.1. If note length < minTrajLen

a) Delete note
1.3. Eliminate octaves

1.3.1. Look for harmonically related notes
with common onsets and offsets
(tolerance for onset and offset deviation
is maxSleepTime)

1.3.2. If higher note energy < lower note
energy × minOctRatio
a) Delete note

2. Return reduced set of notes.

Algorithm 5: Note elimination.

This algorithm is summarized in Algorithm 5.
Parameter definition is presented in Table 4. Figure 5
illustrates note elimination, based on the note candidates
of Figure 4. The obtained notes are depicted with thick

Paiva et al. Detection of Melody

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 10 of 14

lines. We can see that many of the note candidates are
eliminated at this point.

Parameter Name Parameter Value

minAvgNoteEnergy 10

minNumSuffEnergy 5

minOctRatio 0.5

Table 4: Note elimination parameters.

0 0.5 1 1.5 2 2.5
65

70

75

80

85

90

95

100

Time (s)

M
ID

I n
ot

e
nu

m
be

r

Figure 5: Illustration of the note elimination algorithm.

2.5. Melody Extraction

In the final stage of the present melody detection
system, our goal is to obtain a final set of notes
comprising the melody of the song under analysis. The
melody extraction algorithm receives as input the set of
notes returned by the note elimination algorithm and
outputs the final melody notes.

This stage of the proposed melody detection system,
being probably the most important one, is also the most
difficult one to carry out. In fact, many aspects of
auditory organization influence the perception of
melody by humans, for instance in terms of the role
played by the pitch, timbre and intensity content of the
signal. In our approach, we do not attack the problem of
source separation, as would normally be the case.
Instead, we base our strategy on the assumption that the
main melodic line is often salient in terms of note

intensity. As of now, the algorithm for melody
extraction is just a preliminary one that needs to be
further worked out. Anyway, it showed promising
results, as will be discussed shortly.

1. Segment signal based on time intersections between

consecutive notes
2. For all segments

2.1. Get average energy of each note in the current
segment

2.2. Delete low frequency notes
2.1.2. If noteNumber < minNoteNumber

a) Delete note
2.3. Keep only the numTop most intense notes

2.3.1. Sort notes by descending average
energy order

2.3.2. Keep first numTop notes
3. Delete non-dominant notes

3.1. For all notes
3.1.1. durationNumTop � number of frames

where the current note is in the numTop
most intense notes

3.1.2. durationFirst � number of frames
where the current note is the most
intense one

3.1.3. lenNote � total number of frames of the
current note

3.1.4. If durationNumTop / lenNote <
minPercDur or
durationFirst < minTrajLen
a) Delete note

4. Do not allow any simultaneous notes
4.1. Truncate notes that end after the next note

starts
4.2. Delete notes included in larger duration notes
4.3. For notes with approximate onsets and offsets,

keep only the most intense one (tolerance for
onset and offset deviation is maxSleepTime)

5. Return final melody notes.

Algorithm 6: Melody Extraction.

This algorithm starts by analyzing intersections between
notes. The beginning and end of intersection regions is
used to segment the signal, as illustrated in Figure 6,
where si stands for the i-th obtained segment.

Then, for each segment, we determine the three most
intense notes (set on the numTop parameter), based on

Paiva et al. Detection of Melody

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 11 of 14

the average energy of each note in each segment. Notes
below MIDI note number 50 (143.83 Hz), a value set in
the minNoteNumber parameter, are excluded. This
procedure is motivated by the fact that the notes
comprising the melody are, usually, in a middle
frequency range.

Time(s)

M
ID

I n
ot

e
nu

m
be

r

s1 s2 si

Figure 6: Segmentation based on note intersection.

Next, we eliminate all the notes that are not dominant,
i.e., that are not in the three most intense notes for more
than 2/3 (minPercDur parameter) of their total number
of frames or do not have the highest energy for more
than minTrajLen frames. Finally, we do not allow
simultaneous notes. Therefore, we truncate notes that
end after the next note starts, eliminate notes included in
larger duration notes and, for notes with approximate
onsets and offsets, keep only the most intense one.

The melody extraction algorithm is summarized in
Algorithm 6. Parameter definition is presented in Table
5. Figure 7 illustrates melody extraction, based on the
example in Figure 5. The final melody notes are
depicted with thick lines.

Parameter Name Parameter Value

MinNoteNumber 50

NumTop 3

MinPercDur 2/3

Table 5: Melody extraction parameters.

0 0.5 1 1.5 2 2.5
65

70

75

80

85

90

95

100

Time (s)

M
ID

I n
ot

e
nu

m
be

r

Figure 7: Illustration of the melody extraction
algorithm.

3. EXPERIMENTAL RESULTS

One difficulty regarding the evaluation of MIR systems
results from the absence of standard test collections and
benchmark problems. Therefore, we created our own
test database, having care regarding its diversity and
musical content. We collected excerpts of about 6
seconds from 12 songs, encompassing several different
genres. The selected songs contain a solo (either vocal
or instrumental) and accompaniment parts (guitar, bass,
percussion, other vocals, etc.).

The obtained results are summarized in Table 6. There,
“V” stands for vocals and “I” stands for instrumental.
Figure 8 shows an example of the results of the melody
detection system for an excerpt of the song “Thank
You”, by Dido. In this example, we can see that the
correct notes (thick lines) match the obtained melody
notes (thin continuous lines) in most of the cases. The
undetected notes are marked with circles. As can be
seen, the three missing notes were present in the notes
obtained after elimination (dotted lines). One of the
missing notes, approximately at time 5s, corresponds to
erroneous trajectory segmentation.

The detected melody notes were compared with the
correct notes, previously hand-labeled. In the absence of
the melody line, the system detected the dominant
accompaniment part, since sound sources are not
discriminated. This can be seen in Figure 8, by the thin
continuous lines. This is consistent with the way
humans seem to memorize melodies: a mix of solo

Paiva et al. Detection of Melody

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 12 of 14

regions with accompaniment regions, in the absence of a solo.

Song Title Genre Solo
Type

#Total
Notes

#Correct Notes #Correct Notes
after Elimination

Pachelbel’s Kanon Classical I 16 10 (62.5%) 15 (93.75%)

Handel’s Hallelujah Choral V 15 n. r. 14 (93.33%)

Enya – Only Time Neo-Classical V 11 8 (72.72%) 10 (90,9%)

Dido – Thank You Pop V 16 13 (81.25%) 16 (100%)

Ricky Martin – Private Emotion Pop V 10 n. r. 9 (90%)

Avril Lavigne – Complicated Pop/Rock V 14 n.r. 11 (78.57%)

Rua Dona Margarida Jazz I 19 19 (100%) 19 (100%)

Mambo Kings – Bella Maria de Mi
Alma

Bolero I 12 n. r. 9 (75%)

Compay Segundo – Chan Chan Latin V 10 n. r. 9 (90%)

Juan Luis Guerra – Palomita Blanca Rumba V 10 8 (80%) 10 (100%)

Battlefield Band – Snow on the
Hills

Scottish Folk I 26 13 (50%) 26 (100%)

Saxophone riff (monophonic) I 6 6 (100%) 6 (100%)

Table 6: Results of the melody detection system.

0 1 2 3 4 5 6
50

55

60

65

70

75

80

85

90

Time (s)

M
ID

I n
ot

e
nu

m
be

r

Figure 8: Detected melody for “Dido - Thank You”

excerpt.

However, we decided to ignore the notes where the
accompaniment part dominates, in the same way as
Goto does [7]. In order to extract only the melody, we
would need a means of separating notes according to
their sources. The most intuitive, but complex, way to
accomplish this task would be to use timbre models.
Other possibilities would be to separate notes according
to their frequency ranges, energy levels (since the
intensity of a solo varies usually in a smooth way) or
duration of notes (e.g., it is not likely that a short
duration note in the middle of two long notes belongs to
the same source as them).

In our test cases, we observed that some of the notes
were excessively segmented and others were shorter
than the original ones (fortunately, a small number of

Paiva et al. Detection of Melody

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 13 of 14

them). This resulted from noise in both the frequency
and energy sequences, as well as frequency deviations
in the HGTC algorithm, which lead to excessive
trajectory segmentation. The noise in the energy
sequences results often from spectral collision with the
spectra of percussion instruments. One possible way to
deal with this issue would be to smooth the frequency
and energy sequences before segmentation. Another
possibility would be to filter out percussion sounds from
the mixture, which seems to be a challenging task. We
also observed a few semi-tone deviations (once again, a
small number). These errors resulted from the previous
one and so should diminish after we deal with the
problems coming from segmentation. We decided to
ignore these small errors since our goal is to check
whether a note is present or not, no matter in how many
sub-notes the algorithm divides it. These errors can be
reduced as was referred.

We can see that the algorithm could not find any
reasonable melody in some excerpts (“#Correct Notes =
n. r.: not reasonable”). However, in the cases where the
melody stands clearly out of the background and
percussion is not very intense, good results were
achieved, which matches Goto’s results [7]. There is
even one jazz excerpt where all the notes were correctly
detected.

In spite of the described limitations, it is interesting to
note that in all of the cases tested, most of the notes
comprising the melody were still present after the note
elimination stage. Therefore, when QBH is a final goal,
we could follow an approach similar to Song’s, i.e.,
matching a query to the whole set of notes after note
elimination, by finding a path in it [14]. This hypothesis
will be evaluated in the future.

We also tested our system with a simple monophonic
saxophone riff. In this, as well as other monophonic test
cases not reported here, the results were very good in
terms of detection of glissandos, vibratos and note
onsets and offsets. Consequently, we hope our system
could be used as a robust monophonic pitch detection
tool.

4. CONCLUSIONS

We have presented a system for melody detection in
polyphonic music signals. This is a main issue for MIR
applications, such as QBH “real-world” music
databases. The work conducted in this field is presently
restricted to the MIDI realm, and so we guess we make

an interesting contribution to the area, though our
results were not very accurate and general for the time
being. However, the achieved results are encouraging,
since we have not exploited the full potential of our
approach yet. Furthermore, to our knowledge, only Goto
[7] addresses the issue of melody detection in
polyphonic music, but without trying to explicitly
extract notes. Also, our system is reasonably simple and
light, except for the harmonic group detection module,
due to the DFT analysis.

Regarding future work, we plan to further work out
some of the described limitations, namely the melody
extraction algorithm. Additionally, we plan to try out a
different approach: evaluating Independent Component
Analysis capability for source separation. The main idea
would be to separate the solo and accompaniment parts
and then detect the melody in the solo part.

5. ACKNOWLEDGMENTS

This work was partially supported by the Portuguese
Ministry of Science and Technology (MCT), under the
program PRAXIS XXI.

6. REFERENCES

[1] D. Bainbridge, C. Nevill-Manning, I. Witten, L.
Smith and R. McNab, “Towards a Digital Library
of Popular Music”, presented at the ACM
International Conference on Digital Libraries, pp.
161-169, 1999.

[2] J. P. Bello, G. Monti and M. Sandler, “Techniques
for Automatic Music Transcription”, presented at
the First International Symposium on Music
Information Retrieval, 2000.

[3] A. S. Bregman, “Auditory Scene Analysis: the
Perceptual Organization of Sound”, MIT Press,
1990.

[4] W. Chai, “Melody Retrieval on the Web”, MSc
Thesis, Massachusetts Institute of Technology,
2001.

[5] D. Ellis, “Prediction-Driven Computational
Auditory Scene Analysis”, PhD Thesis,
Massachusetts Institute of Technology, 1996.

Paiva et al. Detection of Melody

AES 116th Convention, Berlin, Germany, 2004 May 8–11

Page 14 of 14

[6] A. Ghias, J. Logan, D. Chamberlin and B. C. Smith,
“Query by Humming: Musical Information
Retrieval in an Audio Database” presented at the
ACM Multimedia Conference, 1995.

[7] M. Goto (2001), “A Predominant-F0 Estimation
Method for CD Recordings: MAP Estimation
Using EM Algorithm for Adaptive Tone Models”,
presented at the IEEE International Conference on
Acoustics, Speech and Signal Processing, 2001.

[8] A. Klapuri, “Multipitch Estimation and Sound
Separation by the Spectral Smoothness Principle”,
presented at the IEEE International Conference on
Acoustics, Speech and Signal Processing, 2001.

[9] K. D. Martin, “Automatic Transcription of Simple
Polyphonic Music: Robust Front End Processing”,
presented at the 3rd Joint Meeting of the Acoustical
Societies of America and Japan, 1996.

[10] L. G. Martins, “PCM to MIDI Transposition”,
presented at the 112th Audio Engineering
Convention, 2002.

[11] E. D. Scheirer, “Music-Listening Systems”, PhD
Thesis, Massachusetts Institute of Technology,
2000.

[12] X. Serra, “Musical Sound Modeling with Sinusoids
Plus Noise”, In “Musical Signal Processing”, eds.
C. Roads, S. Pope, A. Picialli and G. De Poli, 1997.

[13] S. Smith, “The Scientist and Engineer's Guide to
Digital Signal Processing”, California Technical
Publishing, 1997.

[14] J. Song, S. Y. Bae and K. Yoon, “Mid-Level Music
Melody Representation of Polyphonic Audio for
Query-by-Humming System”, presented at the
International Symposium on Music Information
Retrieval, 2002.

